Analisa dan Komparasi 5 Algoritma Klasifikasi untuk Penduduk Miskin berdasarkan Usia dan Jenis Kelamin
Abstract
Kemiskinan adalah berbeda-beda dan merefleksikan suatu spektrum orientasi ideologi. Faktor yang mempengaruhi tingkat kemiskinan adalah pertumbuhan ekonomi. Jadi kemiskinan tidak lagi sekedar masalah kekurangan makanan saja. Pertumbuhan keseluruh sektor usaha sangat dibutuhkan dalam upaya menurunkan tingkat kemiskinan. Untuk menangani dan berkoordinasi dalam hal-hal yang berkaitan dengan penanggulangan kemiskinan, maka perlu mengklasifikasikan usia dan jenis kelamin dari individu dengan tingkat kesejahteraan 30% terbawah. Seiring dengan perkembangan teknologi yang begitu pesat, perkembangan algoritma komputer sedang mengembangkan beberapa algoritma untuk mendukung kemajuan sistem komputerisasi. Algoritma yang terkenal diantaranya adalah algoritma Decision Tree (C4.5), Random Tree, Linear and Quadratic Discriminant Analysis, Neural Network, Least Square Support Vector Machines, K-NN, Random Forest, CART, dan Naive Bayes.
References
[2] L. Yu, G. Chen, A. Koronios, S. Zhu, and X. Guo, “Application and Comparison of Classification Techniques in Controlling Credit Risk,” pp. 111–145.
[3] R. S. Wahono, N. S. Herman, and S. Ahmad, “A Comparison Framework of Classification Models for Software Defect Prediction,” vol. 20, no. 10, pp. 1945–1950, 2014, doi: 10.1166/asl.2014.5640.
[4] I. H. Witten, E. Frank, and M. A. Hall, Data Mining “Practical Machine Learning Tools and Techniques,” Third Edit. Burlington: Morgan Kaufmann Publishers, 2011.
[5] C. C. Aggarwal, Data Mining: The Textbook 2015th Edition. New York: Springer, 2015.
[6] D. Farid, L. Zhang, C. Mofizur, M. A. Hossain, and R. Strachan, “Expert Systems with Applications Hybrid Decision Tree and Naive Bayes Classifiers for Multiclass Classification Tasks,” Expert Syst. Appl., vol. 41, no. 4, pp. 1937–1946, 2014, doi: 10.1016/j.eswa.2013.08.089.
[7] C. J. Mantas and J. Abellán, “Expert Systems with Applications Credal-C4 . 5 : Decision Tree based on Imprecise Probabilities to Classify Noisy Data,” Expert Syst. Appl., vol. 41, no. 10, pp. 4625–4637, 2014, doi: 10.1016/j.eswa.2014.01.017.
[8] L. Koc, T. A. Mazzuchi, and S. Sarkani, “Expert Systems with Applications a Network Intrusion Detection System based on a Hidden Naive Bayes Multiclass Classifier,” Expert Syst. Appl., vol. 39, no. 18, pp. 13492–13500, 2012, doi: 10.1016/j.eswa.2012.07.009.
[9] C. Sutton, “Nearest Neighbor Methods,” Semant. Sch., vol. 4, no. 3, pp. 307–309, 2012.
[10] V. Sazonau, “Implementation and Evaluation of a Random Forest Machine Learning Algorithm,” Comput. Sci., 2012.
[11] A. Jameela and P. Revathy, “Comparison of Decision and Random Tree Algorithms on a Web Log Data for Finding Frequent Patterns,” Int. J. Res. Eng. Technol., vol. 3, no. 7, 2014.
[12] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” IJCAI Proc., vol. 95, no. 2, pp. 1137–1143, 1995.
[13] Y. Bengio and Y. Grandvalet, “No Unbiased Estimator of the Variance of K-Fold Cross Validation,” J. Mach. Learn. Res., vol. 5, pp. 1089–1105, 2004.
[14] R. S. Wahono, “Introduction Data Mining,” in Data Mining, Jakarta, 2011, pp. 1–53.
Copyright (c) 2021 Jurnal Cakrawala Informasi

This work is licensed under a Creative Commons Attribution 4.0 International License.